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Abstract

We investigate kernel-based quantile regression based on the pinball loss and sup-
port vector regression based on the ε-insensitive loss. Conditions are given which
quarantee that the set of exact minimizers contains only one function. Some re-
sults about oracle inequalities and learning rates of these methods are presented.

1 Introduction

Let P be a distribution on X × Y , where X is an arbitrary set and Y ⊂ R is closed. The goal of
quantile regression is then to estimate the conditional quantile, i.e., the set valued function

F ∗τ,P(x) :=
{
t ∈ R : P

(
(−∞, t] |x

)
≥ τ and P

(
[t,∞) |x

)
≥ 1− τ

}
, x ∈ X,

where τ ∈ (0, 1) is a fixed constant and P( · |x), x ∈ X , is the (regular) conditional probability.
For conceptual simplicity (though mathematically this is not necessary) we assume throughout this
paper that F ∗τ,P(x) consists of singletons, i.e., there exists a function f∗τ,P : X → R, called the
conditional τ -quantile function, such that F ∗τ,P(x) = {f∗τ,P(x)}, x ∈ X . Let us now consider
the so-called τ -pinball loss function Lτ : R × R → [0,∞) defined by Lτ (y, t) := ψτ (y − t),
where ψτ (r) = (τ − 1)r, if r < 0, and ψτ (r) = τr, if r ≥ 0. Moreover, given a (measurable)
function f : X → R we define the Lτ -risk of f by RLτ ,P(f) :=

∫
X×Y

Lτ (y, f(x)) dP(x, y).
Now recall that f∗τ,P minimizes the Lτ -risk, i.e. RLτ ,P(f∗τ,P) = infRLτ ,P(f) =: R∗Lτ ,P, where
the infimum is taken over all measurable functions f : X → R. Based on this observation several
estimators minimizing a (modified) empirical Lτ -risk were proposed (see [5] for a survey on both
parametric and non-parametric methods) for situations where P is unknown, but i.i.d. samples D :=
((x1, y1), . . . , (xn, yn)) drawn from P are given. In particular, [6, 4, 10] proposed a support vector
machine approach that finds a solution fD,λ ∈ H of

arg min
f∈H

λ‖f‖2H +
1
n

n∑
i=1

Lτ (yi, f(xi)) , (1)

where λ > 0 is a regularization parameter andH is a reproducing kernel Hilbert space (RKHS) over
X . Note that this optimization problem can be solved by considering the dual problem [4, 10], but
since this technique is nowadays standard in machine learning we omit the details. Moreover, [10]
contains an exhaustive empirical study as well some theoretical considerations.

Empirical methods estimating quantiles with the help of the pinball loss typically obtain functions
fD for which RLτ ,P(fD) is close to R∗Lτ ,P with high probability. However, in general this only
implies that fD is close to f∗τ,P in a very weak sense (see [7, Remark 3.18]), and hence there is so
far only little justification for using fD as an estimate of the quantile function. Our goal is to address
this issue by showing that under certain realistic assumptions on P we have an inequality of the form

‖f − f∗τ,P‖L1(PX) ≤ cP

√
RLτ ,P(f)−R∗Lτ ,P . (2)



We then use this inequality to establish an oracle inequality for SVMs defined by (1). In addition,
we illustrate how this oracle inequality can be used to obtain learning rates and to justify a data-
dependent method for finding the hyper-parameter λ and H . Finally, we generalize the methods for
establishing (2) to investigate the role of ε in the ε-insensitive loss used in standard SVM regression.

2 Main results

In the following X is an arbitrary, non-empty set equipped with a σ-algebra, and Y ⊂ R is a closed
non-empty set. Given a distribution P on X × Y we further assume throughout this paper that the
σ-algebra on X is complete with respect to the marginal distribution PX of P, i.e., every subset of a
PX -zero set is contained in the σ-algebra. Since the latter can always be ensured by increasing the
original σ-algebra in a suitable manner we note that this is not a restriction at all.

Definition 2.1 A distribution Q on R is said to have a τ -quantile of type α > 0 if there exists a
τ -quantile t∗ ∈ R and a constant cQ > 0 such that for all s ∈ [0, α] we have

Q
(
(t∗, t∗ + s)

)
≥ cQ s and Q

(
(t∗ − s, t∗)

)
≥ cQ s . (3)

It is not difficult to see that a distribution Q having a τ -quantile of some type α has a unique τ -
quantile t∗. Moreover, distributions Q having a Lebesgue density hQ have a τ -quantile of type α if
hQ is bounded away from zero on [t∗ − α, t∗ + α]. In this case we can use cQ := inf{hQ(t) : t ∈
[t∗ − α, t∗ + α]} in (3). These assumptions are general enough to cover many distributions used
in parametric statistics. Examples are Gaussian, Student’s t, and logistic distributions (with Y =
R), Gamma and log-normal distributions (with Y = [0,∞)), and uniform and Beta distributions
distributions (with Y = [0, 1]).

The following definition describes distributions on X × Y whose conditional distributions P( · |x),
x ∈ X , have the same τ -quantile type α.

Definition 2.2 Let p ∈ (0,∞], τ ∈ (0, 1), and α > 0 be real numbers. A distribution P on X × Y
is said to have a p-average τ -quantile of type α, if P( · |x) is PX -almost surely of τ -quantile type α
and the function b : X → (0,∞) is defined by b(x) := cP( · |x), where cP( · |x) is the constant in (3)
satisfies b−1 ∈ Lp(PX).

Now we give some examples for distributions having p-average τ -quantiles of type α.

Example 2.3 Let P be a distribution on X × R with marginal distribution PX and regular condi-
tional probability Qx

(
(−∞, y]

)
:= 1/(1+e−z), y ∈ R, where z :=

(
y−m(x)

)
/σ(x),m : X → R

describes a location shift, and σ : X → [β, 1/β] describes a scale modification for some constant
β ∈ (0, 1]. Let us further assume that the functions m and σ are continuous. Thus Qx is a logistic
distribution having a positive and bounded Lebesgue density hQx(y) = e−z/(1 + e−z)2, y ∈ R.
The τ -quantile function is t∗(x) := f∗τ,Qx

= m(x) + σ(x) log( τ
1−τ ), x ∈ X , and we can choose

cQx = inf{hQx(t) : t ∈ [t∗(x)− α, t∗(x) + α]}. Note that hQx(m(x) + y) = hQx(m(x)− y) for
all y ∈ R, and hQx(y) is strictly decreasing for y ∈ [m(x),∞). Some algebra gives cQx =
min

{
hQx(t∗(x) − α), hQx(t∗(x) + α)

}
= min

{ u1(x)
(1+u1(x))2 ,

u2(x)
(1+u2(x))2

}
∈

(
cα,β ,

1
4

)
, where

u1(x) := 1−τ
τ e−α/σ(x), u2(x) := 1−τ

τ eα/σ(x) and cα,β > 0 can be chosen independent of x,
because σ(x) ∈ [β, 1/β]. Hence b−1 ∈ L∞(PX) and P has ∞-average τ -quantile of type α.

Example 2.4 Let P̃ be a distribution on X × Y with marginal distribution P̃X and regular con-
ditional probability Q̃x := P̃(· |x) on Y . Further assume that Q̃x is P̃X -surely of τ -quantile type
α > 0, τ ∈ (0, 1). Let us now define a family of distributions P with marginal distribution P̃X

and regular conditional distributions Qx := P̃
(
(· −m(x))/σ(x)

∣∣x), x ∈ X , where m : X → R

describes a location shift and σ : X → (β, 1/β) describes a scale modification for some constant
β ∈ (0, 1]. Let us further assume that the functions m and σ are continuous. Then Qx has by
construction of P a τ -quantile of type α > 0 given by m(x) + σ(x)f∗

τ,Q̃x
, because we obtain for

s ∈ [0, α] the inequality Qx

(( f∗
τ,Q̃x

−m(x)

σ(x) ,
f∗

τ,Q̃x
−m(x)

σ(x) + s
))
≥

(
cQ̃x

σ(x)
)
s ≥ (cQ̃x

β)s and an
analogous inequality for the other probability in (3). Note that cQ̃x

β is bounded if ‖b‖∞ <∞ .



The following theorem shows that for distributions having an average quantile type, the conditional
quantile can be estimated that approximately solves the pinball loss.

Theorem 2.5 Let p ∈ (0,∞], τ ∈ (0, 1), and α > 0 be real numbers. Moreover, let P be a
distribution on X × Y that has a p-average τ -quantile of type α and L be the pinball loss with
parameter τ . Then for all f : X → R satisfying RL,P(f)−R∗L,P ≤ 2−

p+2
p+1α

2p
p+1 we have

‖f − f∗‖Lq(PX) ≤
√

2 ‖b−1‖1/2
Lp(PX)

√
RL,P(f)−R∗L,P ,

where f∗ : X → R is the τ -quantile function of P, b is the function from Def. 2.2, and q := p
p+1 .

Our next goal is to establish an oracle inequality for SVMs defined by (1). To this end let us assume
Y = [−1, 1]. Then we have Lτ (y, t̄) ≤ Lτ (y, t) for all y ∈ Y , t ∈ R, where t̄ denotes t clipped to
the interval [−1, 1], i.e., t̄ := max{−1,min{1, t}}. Since this yields RLτ ,P(f̄) ≤ RLτ ,P(f) for all
functions f : X → R we will focus on clipped functions f̄ in the following.

In order to describe the approximation error of SVMs we need the approximation error function
a(λ) := inff∈H λ‖f‖2H +RLτ ,P(f)−R∗Lτ ,P, λ > 0. Recall that [8] showed that limλ→0 a(λ) = 0
if H is sufficiently rich, i.e., dense in L1(PX). We also need the covering numbers

N
(
BH , ε, L2(µ)

)
:= min

{
n ≥ 1 : ∃x1, . . . , xn ∈ L2(µ) with BH ⊂ ∪n

i=1(xi+εBL2(µ))
}
, ε > 0,

where µ is an arbitrary probability measure on X , and BH and BL2(µ) denote the closed
unit balls of the RKHS H and the Hilbert space L2(µ), respectively. Given a finite sequence
T =

(
(x1, y1), . . . , (xn, yn)

)
∈ (X × Y )n we write TX := (x1, . . . , xn), and we will write

N (BH , ε, L2(TX)) = N (BH , ε, L2(µ)) if µ is an empirical measure defined by TX . We often
write L ◦ f instead of L(x, y, t).

Theorem 2.6 Let P be a distribution onX×[−1, 1] for which there exist constants v ≥ 1, ϑ ∈ [0, 1]
such that

EP

(
L ◦ f̄ − L ◦ f∗τ,P

)2 ≤ v
(
EP(L ◦ f̄ − L ◦ f∗τ,P)

)ϑ
(4)

for all f : X → R. Moreover, let H be a RKHS over X for which there exist constants p ∈ (0, 1)
and a ≥ 1 such that

sup
T∈(X×Y )n

logN
(
BH , ε, L2(TX)

)
≤ aε−2p , ε > 0 . (5)

Then there exists a constant Kp,v depending only on p and v such that for all τ ≥ 1 and λ > 0 we
have with probability not less than 1− 3e−τ that

RL,P(f̄T,λ)−R∗L,P ≤ a(λ)+

√
a(λ)
λ

τ

n
+

(
Kp,va

λpn

) 1
2−ϑ+p(ϑ−1)

+
Kp,va

λpn
+5

(32vτ
n

) 1
2−ϑ

+
145τ
n

.

[9] showed that oracle inequalities of the above type can be used to establish learning rates and
investigate simple data-dependent parameter selection strategies. For example if we assume that
there exist constants c > 0 and β ∈ (0, 1] such that a(λ) ≤ cλβ for all λ > 0 then RL,P(f̄T,λn)
converges to R∗L,P with rate n−γ where γ := min { β

β(2−ϑ+p(ϑ−1))+p ,
2β

β+1} and λn = n−γ/β .
Moreover, [9] shows that this rate can also be achieved by selecting λ in a data-dependent way with
the help of a validation set. Let us now consider how these learning rates in terms of risks translate
into rates for ‖f̄T,λ− f∗τ,P‖Lq(PX). To this end we assume that P has a τ -quantile of p-average type
α for τ ∈ (0, 1). Using the Lipschitz continuity of Lτ and Theorem 2.5 we then obtain

EP

(
L ◦ f̄ −L ◦ f∗τ,P

)2 ≤ EP|f̄ − f∗τ,P|2 ≤ ‖f̄ − f∗τ,P‖2−q
∞ EP|f̄ − f∗τ,P|q ≤ c

(
RL,P(f̄)−R∗L,P

)q/2

for all f satisfyingRL,P(f̄)−R∗L,P ≤ 2−
p+2
p+1α

2p
p+1 . In other words, we have a variance bound (4) for

ϑ := q/2. Arguing carefully to handle the assumption RL,P(f̄)−R∗L,P ≤ 2−
p+2
p+1α

2p
p+1 we then see

that ‖f̄T,λ − f∗τ,P‖Lq(PX) can converge as fast as n−γ , where γ := min { β
β(4−q+p(q−2))+2p ,

β
β+1}.



To illustrate the latter let us assume that H is a Sobolev space Wm(X) of order m ∈ N over X ,
where X is the unit ball inRd. Recall from [3] that H satisfies (5) for p := d/(2m) if m > d/2 and
in this caseH also consists of continuous functions. Further assume that we are in the ideal situation
f∗τ,P ∈ Wm(X) which implies β = 1. Then the learning rate for ‖f̄T,λ − f∗τ,P‖Lq(PX) becomes
n−1/(4−q(1−p)), which for ∞-average type distributions reduces to n−2m/(6m+d) ≈ n−1/3.

Let us now consider the well-known ε-insensitive loss function is defined by L(y, t) := max{0, |y−
t| − ε} for y, t ∈ R, where ε ≥ 0.

Theorem 2.7 Let P be a distribution on X × R which has a unique median, i.e., a unique (1/2)-
quantile f∗1/2,P . Further assume that all conditional distributions P(·|x), x ∈ X , are atom-free and
symmetric, i.e. P(h(x) +A|x) = P(h(x)−A|x) for all x ∈ X , A ⊂ R measurable and a suitable
function h : X → R. If for an ε > 0 the conditional distributions have a positive mass concentrated
around f∗1/2,P ± ε then f∗1/2,P is the only minimizer of RL,P(·), where L is the ε-insensitive loss.

Note that using [7] one can show that for distributions specified in the above theorem the
SVM using the ε-insensitive loss approximates f∗1/2,P whenever the SVM is RL,P-consistent,
i.e. RL,P(fT,λ) → R∗L,P in probability, see [2]. More advanced results in the sense of Theorem
2.5 seem also possible, but are out of the scope of this paper.

3 Proofs

Let us first recall some notions from [7] who investigated surrogate loss functions in general and
the quations how approximate risk minimizers approximate the exact risk minimizing functions in
particular. To this end let L : X × Y × R → [0,∞) be a measurable function which we call a
loss in the following. For a distribution P and a function f : X → R the L-risk is then defined
by RL,P(f) :=

∫
X×Y

L(x, y, f(x)) dP(x, y), and, as usual, the minimal L-risk, or L-Bayes risk,
is denoted by R∗L,P := infRL,P(f), where the infimum is taken over all (measurable) functions
f : X → R. In addition, given a distribution Q on Y the inner L-risk of Q was defined by Steinwart
[7] as CL,Q,x(t) :=

∫
Y
L(x, y, t) dQ(y), x ∈ X , t ∈ R, and the minimal inner L-risks are denoted

by C∗L,Q,x := inf CL,Q,x(t), x ∈ X , where the infimum is taken over all t ∈ R. Moreover, following
[7] we usually omit the indexes x or Q if L happens to be independent of x or y, respectively. Now
note that we immediately obtain

RL,P(f) =
∫

X

CL,P( · |x),x

(
f(x)

)
dPX(x) , (6)

and [7, Thm. 3.2] further shows that x 7→ C∗L,P( · |x),x is measurable if the σ-algebra on
X is complete. Furthermore, in this case it was shown that the intuitive formula R∗L,P =∫

X
C∗L,P( · |x),x dPX(x) holds, i.e. the Bayes L-risk is obtained by minimizing the inner risks and

subsequently integrating with respect to the marginal distribution PX . Based on this observation
the basic idea in [7] is to consider both steps separately. In particular, it turned out that the sets of
ε-approximate minimizers ML,Q,x(ε) :=

{
t ∈ R : CL,Q,x(t) < C∗L,Q,x + ε

}
, ε ∈ [0,∞], and the

set of exact minimizers ML,Q,x(0+) :=
⋂

ε>0ML,Q,x(ε) play a crucial role. Often we omit the
subscripts x and Q in these definitions, if L happens to be independent of x or y, respectively.

Let us now assume that we have two loss functions Ltar : X × Y × R → [0,∞] and Lsur :
X × Y × R → [0,∞], and the goal is to estimate the excess Ltar-risk by the excess Lsur-risk.
This issue was thoroughly investigated in [7], where the main device was the so-called calibration
function δmax ( · ,Q, x) : [0,∞] → [0,∞] defined by

δmax (ε,Q, x) :=

{
inft∈R\MLtar,Q,x(ε) CLsur,Q,x(t)− C∗Lsur,Q,x if C∗Lsur,Q,x <∞ ,

∞ if C∗Lsur,Q,x = ∞ ,

for all ε ∈ [0,∞]. In the following we sometimes write δmax,Ltar,Lsur(ε,Q, x) := δmax (ε,Q, x)
whenever it is needed to explicitly mention the target and surrogate losses. In addition, we will
follow our convention which omits x or Q if L is independent of one of them. Now recall that in [7,
Lem. 2.9] the inequality

δmax

(
CLtar,Q,x(t)− C∗Ltar,Q,x,Q, x

)
≤ CLsur,Q,x(t)− C∗Lsur,Q,x , t ∈ R (7)



was established for situations where C∗Ltar,Q,x < ∞ and C∗Lsur,Q,x < ∞. Before we use this in-
equality to establish an inequality between the excess risks of Ltar and Lsur, let us finally recall
that the Fenchel-Legendre bi-conjugate g∗∗ : I → [0,∞] of a function g : I → [0,∞] defined
on an interval I is the largest convex function h : I → [0,∞] satisfying h ≤ g. In addition, we
write g∗∗(∞) := limt→∞ g∗∗(t) if I = [0,∞). With these preparations we can now establish the
following result which is a generalization of [7, Thm. 2.18].

Theorem 3.1 Let P be a distribution on X × Y with R∗Ltar,P
<∞ and R∗Lsur,P

<∞ and assume
that there exist p ∈ (0,∞] and functions b : X → [0,∞] and δ : [0,∞) → [0,∞) such that

δmax(ε,P( · |x), x) ≥ b(x) δ(ε) , ε ≥ 0, x ∈ X, (8)

and b−1 ∈ Lp(PX). Then for δ̄ := δp/(p+1) : [0,∞) → [0,∞), and all f : X → R we have

δ̄∗∗
(
RLtar,P(f)−R∗Ltar,P

)
≤ ‖b−1‖p/(p+1)

Lp(PX)

(
RLsur,P(f)−R∗Lsur,P

)p/(p+1)
.

Proof: Let us first consider the case RLtar,P(f) < ∞. Since δ̄∗∗ is convex and satisfies δ̄∗∗(ε) ≤
δ̄(ε) for all ε ∈ [0,∞) we see by Jensen’s inequality that

δ̄∗∗
(
RLtar,P(f)−R∗Ltar,P

)
≤

∫
X

δ̄
(
CLtar,P( · |x),x(t)− C∗Ltar,P( · |x),x

)
dPX(x) (9)

Moreover, using (7) and (8) we obtain
b(x) δ

(
CLtar,P( · |x),x(t)− C∗Ltar,P( · |x),x

)
≤ CLsur,P( · |x),x(t)− C∗Lsur,P( · |x),x

for PX -almost all x ∈ X and all t ∈ R. By (9), the definition of δ̄ and Hölder’s inequality in the
form of ‖ · ‖1/q ≤ ‖ · ‖p · ‖ · ‖1, where q := (p+ 1)/p, we thus find that δ̄∗∗

(
RLtar,P(f)−R∗Ltar,P

)
is less than or equal to(∫

X

(
b(x)

)−1/q(CLsur,P( · |x),x

(
f(x)

)
− C∗Lsur,P( · |x),x

)1/q
dPX(x)

)q/q

≤
(∫

X

b−pdPX

)1/(pq)(∫
X

(
CLsur,P( · |x),x

(
f(x)

)
− C∗Lsur,P( · |x),x

)
dPX(x)

)1/q

≤ ‖b−1‖1/q
Lp(PX)

(
RLsur,P(f)−R∗Ltar,P

)1/q
.

Combining this estimate with our first estimate then gives the assertion. Let us finally deal with
the case RLtar,P(f) = ∞. If δ̄∗∗(∞) = 0 there is nothing to proof and hence we restrict our
considerations to the case δ̄∗∗(∞) > 0. Following the proof of [7, Thm. 2.13] we then see that there
exist constants c1, c2 ∈ (0,∞) satisfying t ≤ c1δ

∗∗(t) + c2 for all t ∈ [0,∞]. From this we obtain

∞ = RLtar,P(f)−R∗Ltar,P ≤ c1

∫
X

δ̄∗∗
(
CLtar,P( · |x),x(t)− C∗Ltar,P( · |x),x

)
dPX(x) + c2

≤ c1

∫
X

(
b(x)

)− 1
q

(
CLsur,P( · |x),x

(
f(x)

)
− C∗Lsur,P( · |x),x

) 1
q

dPX(x) + c2 ,

where the last step is analogous to our considerations in the case RLtar,P(f) < ∞. Us-
ing b−1 ∈ Lp(PX) and Hölder’s inequality we then conclude from the above estimate that
RLsur,P(f)−R∗Lsur,P

= ∞, i.e. the assertion is shown.

Our next goal is to determine the inner risks and their minimizers for the pinball loss. To this end
recall (see, e.g., [1, Theorem 23.8]) that given a distribution Q on R and a non-negative function
g : X → [0,∞) we have ∫

R

g dQ =
∫ ∞

0

Q(g ≥ s) ds . (10)

Proposition 3.2 Let τ ∈ (0, 1) and Q be a distribution on R with C∗Lτ ,Q < ∞ and t∗ a τ -quantile
of Q. Then there exists q+, q− ∈ [0,∞) such that q+ + q− = Q({t∗}), and for all t ≥ 0 we have

CLτ ,Q(t∗ + t)− CLτ ,Q(t∗) = tq+ +
∫ t

0

Q
(
(t∗, t∗ + s)

)
ds , and (11)

CLτ ,Q(t∗ − t)− CLτ ,Q(t∗) = tq− +
∫ t

0

Q
(
(t∗ − s, t∗)

)
ds . (12)



Proof: Let us consider the distribution Q(t∗) defined by Q(t∗)(A) := Q(t∗ + A) for all measurable
A ⊂ R. Then it is not hard to see that 0 is a τ -quantile of Q(t∗). Moreover, we obviously have
CLτ ,Q(t∗ + t) = CLτ ,Q(t∗)(t) and hence we may assume without loss of generality that t∗ = 0. Then
our assumptions together with Q((−∞, 0]) + Q([0,∞)) = 1 + Q({0}) yield τ ≤ Q((−∞, 0]) ≤
τ + Q({0}), i.e., there exists a q+ satisfying 0 ≤ q+ ≤ Q({0}) and

Q((−∞, 0]) = τ + q+ . (13)

Let us now compute the inner risks of Lτ . To this end observe we first assume t ≥ 0. Then we have∫
y<t

(y − t) dQ(y) =
∫

y<0
y dQ(y) − tQ((−∞, t)) +

∫
0≤y<t

y dQ(y) and
∫

y≥t
(y − t) dQ(y) =∫

y≥0
y dQ(y)− tQ([t,∞))−

∫
0≤y<t

y dQ(y) and hence we obtain

CLτ ,Q(t) = (τ − 1)
∫

y<t

(y − t) dQ(y) + τ

∫
y≥t

(y − t) dQ(y)

= CLτ ,Q(0)− τt+ tQ((−∞, 0)) + tQ([0, t))−
∫

0≤y<t

y dQ(y) .

Moreover, using (10) we find tQ([0, t)) −
∫
0≤y<t

y dQ(y) =
∫ t

0
Q([0, t))ds −

∫ t

0
Q([s, t)) ds =

tQ({0})+
∫ t

0
Q((0, s))ds, and since (13) implies Q((−∞, 0))+Q({0}) = Q((−∞, 0]) = τ+q+ we

thus obtain (11). Now (12) can be derived from (11) by considering the pinball loss with parameter
1− τ and the distribution Q̄ defined by Q̄(A) := Q(−A), A ⊂ R measurable. This further yields a
real number q− satisfying 0 ≤ q− ≤ Q({0}) and Q([0,∞) = 1− τ + q−. By combining this with
(13) we then find q+ + q− = Q({0}).

For the proof of Theorem 2.5 we have to recall yet a few more concepts from [7]. To this end let
us now assume that our loss function is independent of x, i.e., we consider a measurable function
L : Y ×R→ [0,∞]. We write Qmin(L) :=

{
Q ∈ Qmin(L) : ∃ t∗L,Q ∈ R such that ML,Q(0+) =

{t∗L,Q}
}

, i.e. Qmin(L) contains the distributions on Y whose inner L-risks have exactly one ex-
act minimizer. Furthermore, note that this definition immediately yields C∗L,Q < ∞ for all
Q ∈ Qmin(L). Following [7] we now define the self-calibration loss function of L by

L̆(Q, t) := |t− t∗L,Q| , Q ∈ Qmin(L), t ∈ R . (14)

This loss is a so-called template loss in the sense of [7], i.e., for a given distribution P on X × Y ,
where X has a complete σ-algebra and P( · |x) ∈ Qmin(L) for PX -almost all x ∈ X , the P-
instance L̆P(x, t) := |t − t∗L,P( · |x)| is measurable (and hence a loss function). [7] extended the
definition of inner risks to template functions and in the case of the self-calibration loss function
this extension becomes CL̆,Q(t) := L̆(Q, t). Based on this [7] defined minimial inner risks and
their (approximate) minimizers in the obvious way. Based on this the self-calibration function was
defined by δmax,L̆,L(ε,Q) = inft∈R; |t−t∗L,Q|≥ε CL,Q(t)−C∗L,Q. As shown in [7] this self-calibration
function has two important properties: first it satisfies

δmax,L̆,L

(
|t− t∗L,Q|,Q

)
≤ CL,Q(t)− C∗L,Q , t ∈ R, (15)

i.e. it measures how well approximate L-risk minimizers t approximate the true minimizer t∗L,Q, and
second it equals the calibration function of the P-instance L̆P, i.e.

δmax,L̆P,L(ε,P( · |x), x) = δmax,L̆,L(ε,P( · |x)) , ε ∈ [0,∞], x ∈ X. (16)

In other words, the self-calibration function can be utilized in Theorem 3.1.

Proof of Theorem 2.5: Let Q be a distribution on R with C∗L,Q < ∞ and t∗ be the only τ -quantile
of Q. Then the formulas of Proposition 3.2 show

δmax,L̆,L(ε,Q) = min
{
εq+ +

∫ ε

0

Q
(
(t∗, t∗ + s)

)
ds, εq− +

∫ ε

0

Q
(
(t∗ − s, t∗)

)
ds

}
, ε ≥ 0,

where q+ and q− are the real numbers defined in Proposition 3.2. Let us additionally assume that
the τ -quantile t∗ is of type α. For the function1 δ : [0,∞) → [0,∞) defined by δ(ε) := ε2/2, if ε ∈

1Note the similarity to Huber’s loss function for regression.



[0, α], and δ(ε) := αε− α2/2, if ε > α a simple calculation then yields δmax,L̆,L(ε,Q) ≥ cQδ(ε),
where cQ is the constant satisfying (3). For q = p/(p+ 1) let us further define δ̄ : [0,∞) → [0,∞)
by δ̄(ε) := δq(ε1/q), ε ≥ 0. In view of Theorem 3.1 we then need to find a convex function
δ̂ : [0,∞) → [0,∞) such that δ̂ ≤ δ̄. To this end we define δ̂(ε) := sp

pε
2, if ε ∈

[
0, spap

]
,

and δ̂(ε) := ap

(
ε − sp+2

p ap

)
, if ε > spap, where ap := αp/(p+1) and sp := 2−1/(p+1). An

easy calculation shows that δ̂ : [0,∞) → [0,∞) is continuously differentiable, and its derivative
is increasing, thus δ̂ is convex. Moreover, we have δ̂′ ≤ δ̄′ and hence δ̂ ≤ δ̄ by the fundamental
theorem of calculus which implies δ̂ ≤ δ̄∗∗. We find the assertion by (15), (16), and Theorem 3.1.

Proof of Theorem 2.6: This is a direct consquence of [9, Theorem 2.1].

The proof of Theorem 2.7 follows immediately from the following lemma.

Lemma 3.3 Assume that the regular conditional distribution Q of Y given x is symmetric around
the median t∗. Further assume that Q is atom-free and that Q

(
[t∗ + ε− δ, t∗ + ε+ δ]

)
> 0 for all

δ > 0. Then the inner L-risk CL,Q(t) for the ε-insensitive loss with ε ≥ 0 fulfills

CL,Q(0) = 2
∫∞

ε
Q

(
[s,∞)

)
ds,

CL,Q(t)− CL,Q(0) =
∫ ε

ε−t
Q

(
[s,∞)

)
ds−

∫ ε+t

ε
Q

(
[s,∞)

)
ds ≥ 0, if t ∈ [0, ε],

CL,Q(t)− CL,Q(ε) =
∫ t−ε

0
Q

(
[s,∞)

)
ds−

∫ ε+t

2ε
Q

(
[s,∞)

)
ds+ 2

∫ t−ε

0
Q

(
[0, s]

)
ds ≥ 0, if t > ε.

The set of exact minimizers only contains the median, i.e. ML,Q,x(0+) = {t∗}.

Proof: Because L(y, t) = L(−y,−t) for all y, t ∈ R we only have to consider t ≥ 0. Analogous to
the proof of Proposition 3.2 we may assume w.l.o.g. that Q is symmetric around t∗ = 0. For later
use we note that for 0 ≤ a ≤ b ≤ ∞ Equation (10) yields∫ b

a

y dQ(y) = aQ([a, b]) +
∫ b

a

Q([s, b])ds . (17)

Moreover, the definition of L implies CL,Q(t) =
∫ t−ε

−∞ t−y− ε dQ(y)+
∫∞

t+ε
y− ε− t dQ(y). Using

the symmetry of Q yields −
∫ t−ε

−∞ y dQ(y) =
∫∞

ε−t
y dQ(y) and hence we obtain

CL,Q(t) =
∫ t−ε

0

Q(−∞, t− ε]ds−
∫ t+ε

0

Q[t+ ε,∞)ds+
∫ t+ε

ε−t

y dQ(y)+2
∫ ∞

t+ε

y dQ(y) . (18)

Let us first consider the case t ≥ ε. Then the symmetry of Q yields
∫ t+ε

ε−t
y dQ(y) =

∫ t+ε

t−ε
y dQ(y),

and hence (17) implies

CL,Q(t) =
∫ t−ε

0

Q[ε− t,∞)ds+
∫ t−ε

0

Q
(
[t−ε, t+ε]

)
ds+

∫ t+ε

t−ε

Q
(
[s, t+ε]

)
ds

+2
∫ ∞

t+ε

Q
(
[s,∞)

)
ds+

∫ t+ε

0

Q
(
[t+ε,∞)

)
ds.

Using
∫ t+ε

t−ε
Q

(
[s, t+ ε)

)
ds =

∫ t+ε

0
Q

(
[s, t+ ε)

)
ds−

∫ t−ε

0
Q

(
[s, t+ ε)

)
ds we further obtain∫ t+ε

t−ε

Q
(
[s, t+ ε)

)
ds+

∫ t+ε

0

Q
(
[t+ ε,∞)

)
ds+

∫ ∞

t+ε

Q
(
[s,∞)

)
ds

=
∫ ∞

0

Q
(
[s,∞)

)
ds−

∫ t−ε

0

Q
(
[s, t+ ε)

)
ds .

From this and
∫ t−ε

0
Q

(
[t− ε, t+ ε]

)
ds−

∫ t−ε

0
Q

(
[s, t+ ε]

)
ds = −

∫ t−ε

0
Q

(
[s, t− ε]

)
ds follows

CL,Q(t)=−
∫ t−ε

0

Q
(
[s, t− ε]

)
ds+

∫ t−ε

0

Q
(
[ε− t,∞)

)
ds+

∫ ∞

t+ε

Q
(
[s,∞)

)
ds+

∫ ∞

0

Q
(
[s,∞)

)
ds .



The symmetry of Q implies
∫ t−ε

0
Q

(
[ε− t, t− ε]

)
ds = 2

∫ t−ε

0
Q

(
[0, t− ε]

)
ds, and we get

−
∫ t−ε

0

Q
(
[s, t− ε]

)
ds+

∫ t−ε

0

Q
(
[ε− t,∞)

)
ds = 2

∫ t−ε

0

Q
(
[0, s)

)
ds+

∫ t−ε

0

Q
(
[s,∞)

)
ds .

This and
∫∞

t+ε
Q

(
[s,∞)

)
ds+

∫∞
0

Q
(
[s,∞)

)
ds = 2

∫∞
t+ε

Q
(
[s,∞)

)
ds+

∫ t+ε

0
Q

(
[s,∞)

)
ds yields

CL,Q(t) = 2
∫ t−ε

0

Q
(
[0, s)

)
ds+

∫ t−ε

0

Q
(
[s,∞)

)
ds+2

∫ ∞

t+ε

Q
(
[s,∞)

)
ds+

∫ t+ε

0

Q
(
[s,∞)

)
ds .

By
∫ t−ε

0
Q

(
[s,∞)

)
ds+

∫ t+ε

0
Q

(
[s,∞)

)
ds = 2

∫ t−ε

0
Q

(
[s,∞)

)
ds+

∫ t+ε

t−ε
Q

(
[s,∞)

)
ds we obtain

CL,Q(t) = 2
∫ t−ε

0
Q

(
[0,∞)

)
ds+ 2

∫∞
t+ε

Q
(
[s,∞)

)
ds+

∫ t+ε

t−ε
Q

(
[s,∞)

)
ds, if t ≥ ε.

Let us now consider the case t ∈ [0, ε]. Analogously we obtain from (18) that CL,Q(t) equals∫ ε−t

0

Q
(
[ε− t, t+ ε]

)
ds+

∫ ε+t

ε−t

Q
(
[s, t+ ε]

)
ds+ 2

∫ ∞

ε+t

Q
(
[s,∞)

)
ds

+2
∫ ε+t

0

Q
(
[ε+ t,∞)

)
ds−

∫ ε−t

0

Q
(
[ε− t,∞)

)
ds−

∫ ε+t

0

Q
(
[ε+ t,∞)

)
ds .

Combining this with
∫ ε−t

0
Q

(
[ε− t, t+ ε]

)
ds−

∫ ε−t

0
Q

(
[ε− t,∞)

)
ds = −

∫ ε−t

0
Q

(
[ε+ t,∞)

)
ds

and
∫ ε+t

0
Q

(
[ε+ t,∞)

)
ds−

∫ ε−t

0
Q

(
[ε+ t,∞)

)
ds =

∫ ε+t

ε−t
Q

(
[ε+ t,∞)

)
ds we get

CL,Q(t) =
∫ ε+t

ε−t

Q
(
[ε+ t,∞)

)
ds+

∫ ε+t

ε−t

Q
(
[s, t+ ε]

)
ds+ 2

∫ ∞

ε+t

Q
(
[s,∞)

)
ds

=
∫ ε+t

ε−t

Q
(
[s,∞)

)
ds+ 2

∫ ∞

ε+t

Q
(
[s,∞)

)
ds =

∫ ∞

ε−t

Q
(
[s,∞)

)
ds+

∫ ∞

ε+t

Q
(
[s,∞)

)
ds.

Hence CL,Q(0) = 2
∫∞

ε
Q

(
[s,∞)

)
ds. The expressions for CL,Q(t) − CL,Q(0), t ∈ (0, ε], and

CL,Q(t) − CL,Q(ε), t > ε, given in Lemma 3.3 follow by using the same arguments. Hence one
exact minimizer of CL,Q(·) is the median t∗ = 0. Finally, since Q does not have atoms the function
s 7→ Q[s,∞) is continuous and hence the fundamental theorem of calculus shows that the derivative
of CL,Q(·) : [0,∞) → R is given by C′L,Q(t) = Q

(
[ε − t,∞)

)
− Q

(
[ε + t,∞)

)
. Since CL,Q(·) :

[0,∞) → R is convex we see that t ∈ (0,∞) minimizes CL,Q(·) if and only if Q[ε − t,∞) =
Q[ε + t,∞). The latter is only satisfied if Q does not have a positive mass around ε. I.e. if
Q

(
[ε− δ, ε+ δ]

)
> 0 for all δ > 0, then the set of exact minimizers is ML,Q,x(0+) = {0}.

References
[1] H. Bauer. Measure and Integration Theory. De Gruyter, Berlin, 2001.
[2] A. Christmann and I. Steinwart. Consistency and robustness of kernel based regression. To

appear in: Bernoulli, 2007.
[3] D.E. Edmunds and H. Triebel. Function Spaces, Entropy Numbers, Differential Operators.

Cambridge University Press, 1996.
[4] C. Hwang and J. Shim. A simple quantile regression via support vector machine. In Advances

in Natural Computation: First International Conference (ICNC), pages 512 –520. Springer,
2005.

[5] R. Koenker. Quantile Regression. Cambridge University Press, 2005.
[6] B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett. New support vector algorithms.

Neural Computation, 12:1207–1245, 2000.
[7] I. Steinwart. How to compare different loss functions. Constr. Approx., 26:225–287, 2007.
[8] I. Steinwart, D. Hush, and C. Scovel. Function classes that approximate the Bayes risk. In

Proceedings of the 19th Annual Conference on Learning Theory, COLT 2006, pages 79–93.
Springer, 2006.

[9] I. Steinwart, D. Hush, and C. Scovel. An oracle inequality for clipped regularized risk mini-
mizers. In Advances in Neural Information Processing Systems 20, to appear, 2007.

[10] I. Takeuchi, Q.V. Le, T.D. Sears, and A.J. Smola. Nonparametric quantile estimation. J. Mach.
Learn. Res., 7:1231–1264, 2006.


	Introduction
	Main results
	Proofs

